Tag Archives: industrial machinery

China high quality OEM ODM Customerized Casting Punching Parts for Heavy Agricultural Industrial Trailer Machinery /Dustile Iron/Alloy & Carbon Steel/Grey Iron/Stainless Steel with high quality

Product Description

Product: OEM ODM Customerized Casting Punching Parts For Heavy Agricultural Industrial Trailer Machinery /Dustile Iron/Alloy & Carbon steel/Grey Iron/Stainless steel

Workpiece Specification Casting Standard Casting Weight Casting Tolerance Surface Roughness Heat Treatment Casting Material
OEM production according to customer's drawing or sample. ISO ,DIN, AISI, ASTM, BS, JIS, EN, AS etc.  0.1KG-300KG CT 7-CT 8. Ra 0.05-Ra 50. According to Cusomter's specifications High grade ductile iron(QT1050-6)/
(QT800-5)/(QT600-5)
Grey iron
Stainless steel
Carbon steel
Casting Process Dimension Inspection Finish Origin Design Software
Sand Casting Investment Casting Lost Foam Casting Vacuum process casting Spectrum Analyzer
Hexagon CMM
Hardness test equipment
Tension test machine
E-coating testing equipments Metalloscope
Sand Blasting
Zinc Coat
H.D.Galvanizing
Spray-Paint Passivating
Polishing
Electrophoresis
Machining,etc.
HangZhou
China
AutoCAD
Solidworks2571
Solidege 10
PDF
Creo

FAQ:

Q. Are you manufacturer? What is the aim of your company?

A. Yes. CZPT Asia has been producing agricultural and industrial axles and suspensions since the year 2006. Our aim is to  
     provide only high quality Axles and Suspensions with accesories to global clients but with competitive prices.

Q. Where is your factory?

A. We are located in HangZhou, ZheJiang , China. Welcome to visit us.

Q. How many years have you been in this business line?

A. We have 20 years experience for production of Agricultural and Industrial products, Our products are enjoying good reputation
     from more than 20 countries.

Q. What is your brand?

A. ROC is our own brand, CZPT Asia is affiliated to the France CZPT Group (Est. 1971), it is a whole-owned subsidiary
    company of France CZPT Group in China. 

Q. Can you accept OEM ?

A. Yes, OEM is acceptable, We can sell products without ROC logo.

Q. How do you ensure the quality?

A. We have strict QC process:
1) Before production, Check strictly the raw material quality.
2) During the half production, We check the finished product quality.
3) Before shipment, We test every product and check defects. Any products with defects won't be loaded.
More details, Please check with our sales team.

Q. What about your M.O.Q ?

A. Our minimum order value is USD500. For smaller order, please check particularly with our sales team.

Q. What is the lead time?

A. Within 40 days for 40ft container.  Within 30 days for 20ft container. 

Q. What about your payment terms?

A. We accept various terms, including T/T , L/C , Western Union, etc.
 

How to Design a Forging Spur Gear

Before you start designing your own spur gear, you need to understand its main components. Among them are Forging, Keyway, Spline, Set screw and other types. Understanding the differences between these types of spur gears is essential for making an informed decision. To learn more, keep reading. Also, don't hesitate to contact me for assistance! Listed below are some helpful tips and tricks to design a spur gear. Hopefully, they will help you design the spur gear of your dreams.
Gear

Forging spur gears

Forging spur gears is 1 of the most important processes of automotive transmission components. The manufacturing process is complex and involves several steps, such as blank spheroidizing, hot forging, annealing, phosphating, and saponification. The material used for spur gears is typically 20CrMnTi. The process is completed by applying a continuous through extrusion forming method with dies designed for the sizing band length L and Splitting angle thickness T.
The process of forging spur gears can also use polyacetal (POM), a strong plastic commonly used for the manufacture of gears. This material is easy to mold and shape, and after hardening, it is extremely stiff and abrasion resistant. A number of metals and alloys are used for spur gears, including forged steel, stainless steel, and aluminum. Listed below are the different types of materials used in gear manufacturing and their advantages and disadvantages.
A spur gear's tooth size is measured in modules, or m. Each number represents the number of teeth in the gear. As the number of teeth increases, so does its size. In general, the higher the number of teeth, the larger the module is. A high module gear has a large pressure angle. It's also important to remember that spur gears must have the same module as the gears they are used to drive.

Set screw spur gears

A modern industry cannot function without set screw spur gears. These gears are highly efficient and are widely used in a variety of applications. Their design involves the calculation of speed and torque, which are both critical factors. The MEP model, for instance, considers the changing rigidity of a tooth pair along its path. The results are used to determine the type of spur gear required. Listed below are some tips for choosing a spur gear:
Type A. This type of gear does not have a hub. The gear itself is flat with a small hole in the middle. Set screw gears are most commonly used for lightweight applications without loads. The metal thickness can range from 0.25 mm to 3 mm. Set screw gears are also used for large machines that need to be strong and durable. This article provides an introduction to the different types of spur gears and how they differ from 1 another.
Pin Hub. Pin hub spur gears use a set screw to secure the pin. These gears are often connected to a shaft by dowel, spring, or roll pins. The pin is drilled to the precise diameter to fit inside the gear, so that it does not come loose. Pin hub spur gears have high tolerances, as the hole is not large enough to completely grip the shaft. This type of gear is generally the most expensive of the three.
Gear

Keyway spur gears

In today's modern industry, spur gear transmissions are widely used to transfer power. These types of transmissions provide excellent efficiency but can be susceptible to power losses. These losses must be estimated during the design process. A key component of this analysis is the calculation of the contact area (2b) of the gear pair. However, this value is not necessarily applicable to every spur gear. Here are some examples of how to calculate this area. (See Figure 2)
Spur gears are characterized by having teeth parallel to the shafts and axis, and a pitch line velocity of up to 25 m/s is considered high. In addition, they are more efficient than helical gears of the same size. Unlike helical gears, spur gears are generally considered positive gears. They are often used for applications in which noise control is not an issue. The symmetry of the spur gear makes them especially suitable for applications where a constant speed is required.
Besides using a helical spur gear for the transmission, the gear can also have a standard tooth shape. Unlike helical gears, spur gears with an involute tooth form have thick roots, which prevents wear from the teeth. These gears are easily made with conventional production tools. The involute shape is an ideal choice for small-scale production and is 1 of the most popular types of spur gears.

Spline spur gears

When considering the types of spur gears that are used, it's important to note the differences between the two. A spur gear, also called an involute gear, generates torque and regulates speed. It's most common in car engines, but is also used in everyday appliances. However, 1 of the most significant drawbacks of spur gears is their noise. Because spur gears mesh only 1 tooth at a time, they create a high amount of stress and noise, making them unsuitable for everyday use.
The contact stress distribution chart represents the flank area of each gear tooth and the distance in both the axial and profile direction. A high contact area is located toward the center of the gear, which is caused by the micro-geometry of the gear. A positive l value indicates that there is no misalignment of the spline teeth on the interface with the helix hand. The opposite is true for negative l values.
Using an upper bound technique, Abdul and Dean studied the forging of spur gear forms. They assumed that the tooth profile would be a straight line. They also examined the non-dimensional forging pressure of a spline. Spline spur gears are commonly used in motors, gearboxes, and drills. The strength of spur gears and splines is primarily dependent on their radii and tooth diameter.
SUS303 and SUS304 stainless steel spur gears

Stainless steel spur gears are manufactured using different techniques, which depend on the material and the application. The most common process used in manufacturing them is cutting. Other processes involve rolling, casting, and forging. In addition, plastic spur gears are produced by injection molding, depending on the quantity of production required. SUS303 and SUS304 stainless steel spur gears can be made using a variety of materials, including structural carbon steel S45C, gray cast iron FC200, nonferrous metal C3604, engineering plastic MC901, and stainless steel.
The differences between 304 and 303 stainless steel spur gears lie in their composition. The 2 types of stainless steel share a common design, but have varying chemical compositions. China and Japan use the letters SUS304 and SUS303, which refer to their varying degrees of composition. As with most types of stainless steel, the 2 different grades are made to be used in industrial applications, such as planetary gears and spur gears.
Gear

Stainless steel spur gears

There are several things to look for in a stainless steel spur gear, including the diametral pitch, the number of teeth per unit diameter, and the angular velocity of the teeth. All of these aspects are critical to the performance of a spur gear, and the proper dimensional measurements are essential to the design and functionality of a spur gear. Those in the industry should be familiar with the terms used to describe spur gear parts, both to ensure clarity in production and in purchase orders.
A spur gear is a type of precision cylindrical gear with parallel teeth arranged in a rim. It is used in various applications, such as outboard motors, winches, construction equipment, lawn and garden equipment, turbine drives, pumps, centrifuges, and a variety of other machines. A spur gear is typically made from stainless steel and has a high level of durability. It is the most commonly used type of gear.
Stainless steel spur gears can come in many different shapes and sizes. Stainless steel spur gears are generally made of SUS304 or SUS303 stainless steel, which are used for their higher machinability. These gears are then heat-treated with nitriding or tooth surface induction. Unlike conventional gears, which need tooth grinding after heat-treating, stainless steel spur gears have a low wear rate and high machinability.

China high quality OEM ODM Customerized Casting Punching Parts for Heavy Agricultural Industrial Trailer Machinery /Dustile Iron/Alloy & Carbon Steel/Grey Iron/Stainless Steel     with high qualityChina high quality OEM ODM Customerized Casting Punching Parts for Heavy Agricultural Industrial Trailer Machinery /Dustile Iron/Alloy & Carbon Steel/Grey Iron/Stainless Steel     with high quality

China OEM Customized Agricultural Machinery CNC Turning Metal Industrial Milling Parts with Great quality

Product Description

Customized agricultural machinery CNC turning metal industrial Milling Parts

Optional

CNC turning / CNC milling service

Material

Stainless Steel , Aluminum , Copper , Iron , Plastic etc.

Size 

Customized Size , Make Appointed Size to Match Your Products.

Design and Advise

Design and Skilled Support, Put Your Good Ideal into Reality.

  Inspection   1.100% inspection on critical dimension; 100% on appearance.
  2.Third Party inspection available upon requirement
  After-sales Services   Video Techincal Support, Online Support, Engineers

Sample Cost

Free of Sample Cost. Normally is USD 35~110 per Style If Special Design We Need Sample Charge, Can Refund when You Have Official Bulk Order.

Sample time

Common products 1-7 days after received drawing and payment

Delivery Time

1-25 days after order with prepayment based on products structure and quantity

Payment Terms

Only 30% Deposit, Make Your Floating Capital More Effective.

Shipping

By Air or Sea. If Choose by Air, it is Faster Like You Purchase from Local Market.

Quality Guarantee

  1 years

Service Type

OEM / ODM

Quality Control

Quality control standards

1.Consistent calibration and inspection tool
 

2.Optional XRF analysis report
 

3.Well-equipped inspection department
 

4.Materials inspection by IQC
 

5.FQC will check the products
 

6.100% inspected by OQC before shipping
 

7.Designated area for nonconforming products
 

8.Root cause analysis of unqualified

Application

Industry, Mining, Marine, Public Utilities,Automatic machine, Medical device, Automobile, Electric appliance etc

Main material 
Stainless Steel SS201,SS301,SS303, SS304, SS316, SS416 etc.
Steel mild steel, Carbon steel, 4140, 4340, Q235, Q345B, 20#, 45# etc.
Brass HPb63, HPb62, HPb61, HPb59, H59, H68, H80, H90 etc.
Copper C11000,C12000,C12000, C36000 etc.
Aluminum AL6061, Al6063, AL6082, AL7075, AL5052, A380 etc.
Iron A36, 45#, 1213, 12L14, 1215 etc.

 

Surface treatment
Stainless Steel Polishing, Passivating, Sandblasting, Laser engraving
Steel Zinc plating, Oxide black, Nickel plating, Chrome platingk, Carburized, Powder Coated
Aluminum parts Clear Anodized, Color Anodized, Sandblast Anodized, Chemical Film,Brushing,Polishing

 

Application

Agricultural equipment

Computing equipment

Automobile industry

Textile equipment

Medical / dental instruments

Measuring instruments

Petrochemical industry

Safety equipment

Pharmaceutical industry

Pumps and general connections

Pharmaceutical industry

General machinery

Industrial valves

Fixing and movable equipment

Instrumentation equipment

Sanitary fittings

HangZhou Jieni Machinery Parts Co., Ltd. was established in 2008 and is located in HangZhou, which is next to HangZhou, ZHangZhoug.
We are a manufacturer specializing in OEM customized high-precision parts for various industries. We can design, manufacture and assemble according to customer drawings or sample requirements Various mechanical parts and metal parts. The company has a comprehensive process technology and advanced machinery and equipment, with CNC lathes,
CNC machining centers, turning and milling CNC, precision automatic lathes, various instrument lathes, drilling machines
and other mechanical equipment. Products are widely used in automobiles, machinery and equipment, household appliances, etc. Electrical appliances, household sanitary ware, medical equipment, toys, handicrafts and other fields. We
not only provide OEM services, but also provide you with professional technical support and the best production plan for equipment and parts. We specialize in rapid prototyping, rapid processing, small batch and mass production manufacturing of customized parts. We produce more than 10,000 kinds of parts every year, with rich processing experience, we can turn everything into reality. Short delivery time, 24-hour response, full-step QC inspection, and strict compliance with the confidentiality agreement.
Since the establishment of the company, we have adhered to the business policy of "Quality First, Customer First, Credit First", and always try our best to meet the potential needs of customers. The trend of economic globalization is developing with irresistible forces. Our company is sincerely willing to cooperate with enterprises all over the world to achieve a CZPT situation. Welcome to visit the factory! !We look forward to working with you! 
1. Can design and customize products with small batch orders according to the customer's drawings.
2. Propose the best solution according to the customer's product, and adopt the best production plan to reduce costs.
3.We have many years of production experience, if there is a conflict between product design and actual production, we
   can propose the best modification to meet the actual use of the product.
4.First-class product quality and perfect after-sales service.
5. Factory Outlet.
1.Q: Are you a trading company or a factory?
A: We are a factory

2. Q: How long is your delivery time?
A: Samples are generally 3-7 days; bulk orders are 10-25 days, depending on the quantity and parts requirements.

3. Do you provide samples? Is it free or extra?
A: Yes, we can provide samples, and we will charge you based on sample processing. The sample fee can be refunded
     after placing an order in batches.

4Q: Design drawing service
A: Our main business is to undertake drawing processing. For customers who don't know much about drawing, we also       provide design and drawing services. You need to provide samples or sketches.

5Q. About drawing confidentiality
A: The processed samples and drawings are strictly confidential and will not be disclosed to anyone else.

6. Q: How do you guarantee your products?
A: Every product is manufactured in a certified workshop. We provide customers with certificates to ensure quality, and
     we can also provide samples for your testing before mass production.

How to Design a Forging Spur Gear

Before you start designing your own spur gear, you need to understand its main components. Among them are Forging, Keyway, Spline, Set screw and other types. Understanding the differences between these types of spur gears is essential for making an informed decision. To learn more, keep reading. Also, don't hesitate to contact me for assistance! Listed below are some helpful tips and tricks to design a spur gear. Hopefully, they will help you design the spur gear of your dreams.
Gear

Forging spur gears

Forging spur gears is 1 of the most important processes of automotive transmission components. The manufacturing process is complex and involves several steps, such as blank spheroidizing, hot forging, annealing, phosphating, and saponification. The material used for spur gears is typically 20CrMnTi. The process is completed by applying a continuous through extrusion forming method with dies designed for the sizing band length L and Splitting angle thickness T.
The process of forging spur gears can also use polyacetal (POM), a strong plastic commonly used for the manufacture of gears. This material is easy to mold and shape, and after hardening, it is extremely stiff and abrasion resistant. A number of metals and alloys are used for spur gears, including forged steel, stainless steel, and aluminum. Listed below are the different types of materials used in gear manufacturing and their advantages and disadvantages.
A spur gear's tooth size is measured in modules, or m. Each number represents the number of teeth in the gear. As the number of teeth increases, so does its size. In general, the higher the number of teeth, the larger the module is. A high module gear has a large pressure angle. It's also important to remember that spur gears must have the same module as the gears they are used to drive.

Set screw spur gears

A modern industry cannot function without set screw spur gears. These gears are highly efficient and are widely used in a variety of applications. Their design involves the calculation of speed and torque, which are both critical factors. The MEP model, for instance, considers the changing rigidity of a tooth pair along its path. The results are used to determine the type of spur gear required. Listed below are some tips for choosing a spur gear:
Type A. This type of gear does not have a hub. The gear itself is flat with a small hole in the middle. Set screw gears are most commonly used for lightweight applications without loads. The metal thickness can range from 0.25 mm to 3 mm. Set screw gears are also used for large machines that need to be strong and durable. This article provides an introduction to the different types of spur gears and how they differ from 1 another.
Pin Hub. Pin hub spur gears use a set screw to secure the pin. These gears are often connected to a shaft by dowel, spring, or roll pins. The pin is drilled to the precise diameter to fit inside the gear, so that it does not come loose. Pin hub spur gears have high tolerances, as the hole is not large enough to completely grip the shaft. This type of gear is generally the most expensive of the three.
Gear

Keyway spur gears

In today's modern industry, spur gear transmissions are widely used to transfer power. These types of transmissions provide excellent efficiency but can be susceptible to power losses. These losses must be estimated during the design process. A key component of this analysis is the calculation of the contact area (2b) of the gear pair. However, this value is not necessarily applicable to every spur gear. Here are some examples of how to calculate this area. (See Figure 2)
Spur gears are characterized by having teeth parallel to the shafts and axis, and a pitch line velocity of up to 25 m/s is considered high. In addition, they are more efficient than helical gears of the same size. Unlike helical gears, spur gears are generally considered positive gears. They are often used for applications in which noise control is not an issue. The symmetry of the spur gear makes them especially suitable for applications where a constant speed is required.
Besides using a helical spur gear for the transmission, the gear can also have a standard tooth shape. Unlike helical gears, spur gears with an involute tooth form have thick roots, which prevents wear from the teeth. These gears are easily made with conventional production tools. The involute shape is an ideal choice for small-scale production and is 1 of the most popular types of spur gears.

Spline spur gears

When considering the types of spur gears that are used, it's important to note the differences between the two. A spur gear, also called an involute gear, generates torque and regulates speed. It's most common in car engines, but is also used in everyday appliances. However, 1 of the most significant drawbacks of spur gears is their noise. Because spur gears mesh only 1 tooth at a time, they create a high amount of stress and noise, making them unsuitable for everyday use.
The contact stress distribution chart represents the flank area of each gear tooth and the distance in both the axial and profile direction. A high contact area is located toward the center of the gear, which is caused by the micro-geometry of the gear. A positive l value indicates that there is no misalignment of the spline teeth on the interface with the helix hand. The opposite is true for negative l values.
Using an upper bound technique, Abdul and Dean studied the forging of spur gear forms. They assumed that the tooth profile would be a straight line. They also examined the non-dimensional forging pressure of a spline. Spline spur gears are commonly used in motors, gearboxes, and drills. The strength of spur gears and splines is primarily dependent on their radii and tooth diameter.
SUS303 and SUS304 stainless steel spur gears

Stainless steel spur gears are manufactured using different techniques, which depend on the material and the application. The most common process used in manufacturing them is cutting. Other processes involve rolling, casting, and forging. In addition, plastic spur gears are produced by injection molding, depending on the quantity of production required. SUS303 and SUS304 stainless steel spur gears can be made using a variety of materials, including structural carbon steel S45C, gray cast iron FC200, nonferrous metal C3604, engineering plastic MC901, and stainless steel.
The differences between 304 and 303 stainless steel spur gears lie in their composition. The 2 types of stainless steel share a common design, but have varying chemical compositions. China and Japan use the letters SUS304 and SUS303, which refer to their varying degrees of composition. As with most types of stainless steel, the 2 different grades are made to be used in industrial applications, such as planetary gears and spur gears.
Gear

Stainless steel spur gears

There are several things to look for in a stainless steel spur gear, including the diametral pitch, the number of teeth per unit diameter, and the angular velocity of the teeth. All of these aspects are critical to the performance of a spur gear, and the proper dimensional measurements are essential to the design and functionality of a spur gear. Those in the industry should be familiar with the terms used to describe spur gear parts, both to ensure clarity in production and in purchase orders.
A spur gear is a type of precision cylindrical gear with parallel teeth arranged in a rim. It is used in various applications, such as outboard motors, winches, construction equipment, lawn and garden equipment, turbine drives, pumps, centrifuges, and a variety of other machines. A spur gear is typically made from stainless steel and has a high level of durability. It is the most commonly used type of gear.
Stainless steel spur gears can come in many different shapes and sizes. Stainless steel spur gears are generally made of SUS304 or SUS303 stainless steel, which are used for their higher machinability. These gears are then heat-treated with nitriding or tooth surface induction. Unlike conventional gears, which need tooth grinding after heat-treating, stainless steel spur gears have a low wear rate and high machinability.

China OEM Customized Agricultural Machinery CNC Turning Metal Industrial Milling Parts     with Great qualityChina OEM Customized Agricultural Machinery CNC Turning Metal Industrial Milling Parts     with Great quality

China OEM Agricultural Industrial Usage Metal Precision Auto Custom Aluminum CNC Machining Machine Machinery Parts for Agricultural Parts with Great quality

Product Description

Agricultural Industrial Usage Metal Precision Auto Custom Aluminum CNC Machining Machine Machinery Parts for Agricultural Parts
 

Factory: Rollyu Precision Machining Co., Ltd
Production Description  Agricultural Industrial Usage Metal Precision Auto Custom Aluminum CNC Machining Machine Machinery Parts for Agricultural Parts
Processing Machining, Turning, Milling, Grinding, Wire-EDM,Fabrication service etc.
Material for CNC Machining processing 1) Aluminum - AL 6061-T6, 6063, 7075-T,5083,6063,6082,5052,2A12 etc.
2) Stainless steel - SS 201,SS301 SS303,SS304,SS316L, SS416L,17-4(SUS630),440C, 430 etc.
3) Steel - 4140,4340,Q235, Q345B,20#,Cr12MoV,D2,A2,4140,4150,P20,S136,M2,O2, SKD11,CRS, etc.
4) Titanium - TA1,TA2/GR2, TA4/GR5, TC4, TC18 etc.
5) Brass - C36000 (HPb62), C37700 (HPb59), C26800 (H68), C22000(H90) etc.
6) Copper - bronze,Phosphor Bronze, Magnesium alloy,  etc.
7) Plastic - Peek, Nylon, G-10, Acrylic,Anti-Static Acetal Tan (Tecaform SD) , PC,ABS, etc.
8) Food class ,Medical class- such as POM, Delrin, etc.
9) Aerospace class - PEI+30%GF,PEEK+30%GF,PC+30%GF,PU,PTFE,PE,PVC etc.
10) Rollyu Precision handles many other type of materials, please kindly contact us if your required material is not listed above.
Finish For Aluminum parts - Clear anodized, Color anodized, Hard anodized, Sandblasting, Chemical film, Brushing, Polishing, Painting, Silk screen printing,Etching,  Laser marking, etc.
For Stainless steel parts  - Polishing, Passivation,PVD, Sandblasting, Black oxide, Electrophoresis black, Painting, Silk screen printing,Etching,  Laser marking, etc.
For Steel parts - Polishing, Black oxide, Nickel /Zinc/Gold/ Chrome/Silver plating, Carburized, Powder coating,electrophoresis, QPQ(Quench-Polish-Quench), Heat treatment,
Painting, Silk screen printing,Etching,  Laser marking, etc. etc.
For Brass parts - Nickel /Zinc/Gold/ Chrome/Silver/Titanium plating, Electrophoresis black, Powder coating,Painting, Silk screen printing,Etching,  Laser marking, etc. 
For Plastic parts - Plating (ABS), Brushing (Acylic),Painting, Silk screen printing,Etching,  Laser marking, etc.
Rollyu Precision handles many other type of finish, please kindly contact us if your required finish is not listed above.
Tolerance Minumum tolerance +/- 0.05mm (+/- 0.0005")
Surface roughness  Ra 0.1~3.2
Drawing format Step/Igs/PDF/DWG/DXF, etc.
Testing equipment CMM (Coordinate Measuring Machine),Height gauge, Caliper,  Hardness tester, Roughness tester, Projector machine, Pin/Angle/Block/Plug/Thickness/Thread/Radius  gauge,etc. 
MOQ 1 piece
Lead time 2 weeks after received order.
Certificate ISO9001, ISO13485.
Inspection processing IQC,IPQC, FQC, QA.
Capacity CNC turning work range: φ0.5mm-φ650mm*600mm.
CNC milling work range: 880mm*1300mm*600mm.
Application Automation, Medical device, Consumer Electronics, Security, IoT, Energy, etc. 

Rollyu Precision Machining Co., Ltd located in HangZhou, China, is a mechanical manufacturer providing a wide range of custom specialty plastic injection molded parts, cnc machining parts, Sheet Metal Fabrication, Liquid Silicone Rubber Injection Parts, Aluminum Extrusion, Sub-assemblies ,along with advanced over molding capability.
Serving markets including Security systems, Fire systems, Marine ,Health care, Medical Devices, Personal Care, Networking, Internet of Things (IoT), Xihu (West Lake) Dis.n Machine Interaction (HMI) , Consumer Electronics, Telecommunications and Renewable Energy as well as many others with solutions for a variety of challenges they face in these high paced, ever-changing industries. Rollyu Precision provides mechanical components and sub-assemblies to many of the top companies worldwide.

With many years of mechanical parts manufacturing, we continue to expand our capabilities and are well positioned to offer concept-to-commercialization solutions. Rollyu Precision can provide over molding capabilities to streamline timelines and costs. If medical device engineering and design for manufacturing services are needed, our project teams are aligned to provide those services, including tool and fixture fabrication and rapid prototyping.

Examples Of Services And Capabilities Include:

  • Engineering DFM Services
  • CNC Swiss Machining, Milling, and Turning
  • Over molding and Injection Molding
  • Plastic Injection Molded Parts
  • Liquid Silicone Rubber Injection Parts
  • Aluminum Extrusion
  • Sheet Metal Fabrication
  • Sub-assemblies

For a more complete list, please send us inquiry.

Rollyu Precision has unrivalled links with the companies Medical device, Instrumentation, Security systems, IoT, HMI, Automation, Photonics, Energy, Marine and many others industries. We have mutually beneficial relationships with nearly 150 companies around the world, from the smallest company to the largest enterprise. 
For our partners, we deliver world-class machining parts, plastic molded parts , silicone rubber parts, sheet metal fabrication, heat sink, and assembly components. We can manufacture from single parts to sub-assemblies to meet challenges and your goals.
FAQ
Q1: Are you a trading company or a factory ?
A1: We are a manufacturer specialized in precision parts OEM, Machining parts,  Plastic injection molding, Plastic parts, Silicone and rubber parts, Heat sink, sheet metal fabrication as well as Sub-assembly.

Q2: Do you accept to manufacture the customized products based on our design?
A2: Yes, we are a professional factory with an experienced engineering team, would like to provide the OEM service.

Q3: How can I get the quotation?
A3: We will offer you the quotation within 24 working hours after receiving your detailed information. In order to quote you faster and more accurate, please provide us the following information together with your inquiry:
1) CAD or 3D Drawings
2) Tolerance.
3) Material requirement
4) Surface treatment
5) Quantity (per order/per month/annual)
6) Any special demands or requirements, such as packing, labels, delivery,etc.

Q4: Will my drawings be safe after sending to you?
A4: Sure, we will keep them well and not release to others without your permission.

Q5: How long is the lead-time for a mold and plastic parts, machining parts, sheet metal fabrication?
A5: It all depends on the mold (parts) size and complexity.
Normally, the lead time is 18-20 days for molds, 15-20 days for plastic parts. If the molds are very simple and not big, we can work out within 15 days.
The lead time for machining parts is around 2-4 weeks.
For sheet metal fabrication the lead time is around 3-5 weeks.

Q6: I have no 3D drawing, how should I start the new project?
A6: You can supply us the sample or provide us the product sizes and let us know the detailed requirements, our engineers will help you to work out the 3D drawing.

Q7: If you make poor quality goods, will you refund our fund?
A7: As a matter of fact, we won't take a chance to do poor quality products. Meanwhile, we manufacture good-quality products until your satisfaction.

Q8: Is it possible to know how are my products going on without visiting your factory?
A8: We will offer a detailed production schedule and send weekly reports with digital pictures and videos which show the machining progress.
 

Choosing the Right Ball Bearing for Your Application

When choosing a Ball Bearing, there are several things to consider. These factors include: the size, lubricant type, presence of corrosive agents, stray electrical currents, and more. It can be challenging to choose the right type, size, and type of ball bearing for your application. You should also carefully calculate the loads to determine the right size. Here are some tips for choosing the right Ball Bearing for your application.

Single-row

The single-row ball bearing is 1 of the most popular types of bearings. The inner and outer ring are designed with raceway grooves that are shaped slightly larger than the balls. This type of bearing has a low torque and can handle high-speed applications with minimal power loss. The radial dimensions of single-row ball bearings also vary, so it is possible to find 1 that fits your specific application. Besides the above-mentioned advantages, single-row ball bearings are also available with varying grease levels and are widely applicable to applications where the space is limited.
Single-row ball bearings are also called angular-contact ball bearings. Because of their single-row design, they are not separable and can accommodate a high-speed, heavy-duty application. Single-row angular-contact ball bearings can only handle axial load in 1 direction, and they must be installed in pairs for pure radial loads. Single-row ball bearings are a popular type of rolling bearings and can be used for a wide range of applications.
bearing

Self-aligning

The self-aligning ball bearing was invented by Sven Wingquist, a plant engineer for a textile company in Sweden. While he was responsible for making production as efficient as possible, he soon realized that the machinery he had in place wasn't working as efficiently as it could. Although ball bearings are great for reducing friction, they were not flexible enough to compensate for misalignments in the machine.
Self-aligning ball bearings have 2 rows of balls and a common sphered raceway. The inner ring is curved and combines the 2 rows of balls into 1 cage. These bearings can tolerate shaft misalignment and compensate for static angular defects. They can be used in simple woodworking machinery, ventilators, and conveying equipment. They are often the preferred choice for applications where shaft alignment is an issue.

Ceramic

A Ceramic ball bearing is a type of high-performance bearing that is available in both full-ceramic and hybrid forms. The main differences between ceramic and steel ball bearings are their construction, lubrication, and mobility. High-quality ceramic ball bearings are durable, and they are ideal for corrosive and high-temperature applications. The material used to create these bearings helps prevent electrolytic corrosion. They are also ideal for reducing the friction and lubrication requirements.
Ceramic balls are harder and less brittle than steel balls, which gives them a higher degree of rigidity. Ceramics also have a higher hardness, with a hardness of Rc75-80 compared to Rc58-64 for steel balls. Their high compressive strength is approximately 5 to 7 times greater than steel. In addition, they have a very low coefficient of friction, which allows them to spin at higher speeds and with less friction. This increases their lifespan and durability, and decreases the energy needed to turn cranks.

Steel

Unlike traditional bearings, steel balls have a relatively uniform hardness. Carbon steel, for instance, is 2.1% carbon by weight. According to the American Iron and Steel Institute, copper content must be no more than 0.40% and manganese content should not be more than 1.65 g/cm3. After carbonizing, steel balls undergo a process called sizing, which improves their roundness geometry and hardness.
The main differences between steel ball bearings and ceramic ball bearings can be traced to their different materials. Ceramic balls are made from zirconium dioxide or silicon nitride. Silicon nitride is harder than steel and resists shocks. The result is increased speed and longer service life. Polyoxymethylene acetal (PMMA) bearing balls are known for their stiffness, strength, and tolerance, but are not as common as steel ball bearings.

Plastic

The most popular types of plastic ball bearings are made of polypropylene or PTFE. These bearings are used in applications requiring higher chemical resistance. Polypropylene is a structural polymer that offers excellent physical and chemical properties, including excellent resistance to organic solvents and degreasing agents. Its lightweight, low moisture absorption rate, and good heat resistance make it an excellent choice for high-temperature applications. However, plastic bearings are not without their drawbacks, especially when operating at very high temperatures or under heavy loads.
Compared to metal bearings, plastic ball-bearings do not require lubrication. They also are highly corrosion-resistant, making them an excellent choice for wash-down applications. They are also post-, autoclave-, and gamma sterilizable. Many conventional steel ball-bearings cannot handle the high temperatures of food processing or swimming pools. In addition to high temperature applications, plastic ball bearings are resistant to chemicals, including chlorine.
bearing

Glass

Plastic sliding bearings are molded bearings made of engineering plastic. With self-lubricating modification technology, these bearings can be produced by injection molding of plastic beads. They are widely used in various industries such as office equipment, fitness and automotive equipment. In addition to plastic bearings, glass balls are used in a variety of other applications, including medical equipment. Glass ball bearings have excellent corrosion resistance, excellent mechanical properties, and are electrically insulators.
Plastic ball bearings are made of all-plastic races and cages. These bearings are suitable for applications that are exposed to acids and alkalis. Because they are cheaper than glass balls, plastic ball bearings are popular in chemical-exposed environments. Stainless steel balls are also resistant to heat and corrosion. But the main disadvantage of plastic ball bearings is that they are not as strong as glass balls. So, if weight and noise is your main concern, consider using plastic balls instead.

Miniature

The global miniature ball bearing market is expected to reach US$ 2.39 Billion by 2027, at a CAGR of 7.2%. Growth in the region is attributed to technological advancement and government initiatives. Countries such as India and China are attracting FDIs and emphasizing the establishment of a global manufacturing hub. This is boosting the market for miniature ball bearings. The miniscule ball bearings are manufactured in small quantities and are very small.
Some manufacturers produce miniature ball bearings in different materials and designs. Chrome steel is the most popular material for miniature ball bearings because of its high load capacity, low noise properties, and lower cost. But the cost of stainless steel miniature bearings is low, since the amount of steel used is minimal. Stainless steel miniature bearings are the smallest in size. Therefore, you can choose stainless steel mini ball bearings for high-speed applications.

Angular-contact

Angular-contact ball bearings have 3 components: a cage, inner ring, and balls. Angular-contact ball bearings can support high axial and radial loads. Various design and manufacturing attributes make angular-contact ball bearings suitable for a variety of applications. Some features of this bearing type include a special lubricant, different cage materials, and different coatings.
The size of an angular-contact ball bearing is determined by the design units: outer ring width, axial load, and radial load. Depending on the type of application, an angular-contact ball bearing may be manufactured in double-row, triple-row, or quadruple-row configurations. Angular contact ball bearings can be classified according to their design units, which range from metric to imperial. A higher ABEC number means tighter tolerances. To determine the tolerance equivalent of a particular bearing, consult a standard Angular-contact ball bearing table.
Angular-contact ball bearings feature high and low-shoulder configurations. They have two-dimensional races that accommodate axial and radial loads. They are available in self-retaining units with solid inner and outer rings, and ball and cage assemblies. Cages made of cast and wrought brass are the most popular, but lightweight phenolic cages are also available. The latter is a better choice because it doesn't absorb oil and has lower rolling friction.
bearing

Materials

When it comes to the construction of a ball bearing, high-quality raw materials are a crucial component. These materials not only affect the overall quality of a ball bearing, but also influence the cost. That's why you should pay close attention to raw material quality. In addition to that, raw materials should be tested several times before the manufacturing process to ensure quality. Read on for some information about the different types of materials used to make ball bearings.
Steel is the most common material for ball bearings. Most ball bearings contain stainless steel balls, which are remarkably corrosion-resistant. They are also resistant to saltwater and alkalis. However, stainless steel balls are heavier than plastic ones, and they are also magnetic, which may be a drawback in some applications. If you're looking for a metal-free option, glass balls are the way to go. They're sturdy, lightweight, and resistant to a wide range of chemicals.

China OEM Agricultural Industrial Usage Metal Precision Auto Custom Aluminum CNC Machining Machine Machinery Parts for Agricultural Parts     with Great qualityChina OEM Agricultural Industrial Usage Metal Precision Auto Custom Aluminum CNC Machining Machine Machinery Parts for Agricultural Parts     with Great quality

China wholesaler OEM Agricultural Industrial Equipments Machinery Casting Parts near me shop

Product Description

Product: OEM Agricultural Industrial Equipments Machinery Casting Parts 

Workpiece Specification Casting Standard Casting Weight Casting Tolerance Surface Roughness Heat Treatment Casting Material
OEM production according to customer's drawing or sample. ISO ,DIN, AISI, ASTM, BS, JIS, EN, AS etc.  0.1KG-300KG CT 7-CT 8. Ra 0.05-Ra 50. According to Cusomter's specifications High grade ductile iron(QT1050-6)/
(QT800-5)/(QT600-5)
Grey iron
Stainless steel
Carbon steel
Casting Process Dimension Inspection Finish Origin Design Software
Sand Casting Investment Casting Lost Foam Casting Vacuum process casting Spectrum Analyzer
Hexagon CMM
Hardness test equipment
Tension test machine
E-coating testing equipments Metalloscope
Sand Blasting
Zinc Coat
H.D.Galvanizing
Spray-Paint Passivating
Polishing
Electrophoresis
Machining,etc.
HangZhou
China
AutoCAD
Solidworks2571
Solidege 10
PDF
Creo

FAQ:

Q. Are you manufacturer? What is the aim of your company?

A. Yes. CZPT Asia has been producing agricultural and industrial axles and suspensions since the year 2006. Our aim is to  
     provide only high quality Axles and Suspensions with accesories to global clients but with competitive prices.

Q. Where is your factory?

A. We are located in HangZhou, ZheJiang , China. Welcome to visit us.

Q. How many years have you been in this business line?

A. We have 20 years experience for production of Agricultural and Industrial products, Our products are enjoying good reputation
     from more than 20 countries.

Q. What is your brand?

A. ROC is our own brand, CZPT Asia is affiliated to the France CZPT Group (Est. 1971), it is a whole-owned subsidiary
    company of France CZPT Group in China. 

Q. Can you accept OEM ?

A. Yes, OEM is acceptable, We can sell products without ROC logo.

Q. How do you ensure the quality?

A. We have strict QC process:
1) Before production, Check strictly the raw material quality.
2) During the half production, We check the finished product quality.
3) Before shipment, We test every product and check defects. Any products with defects won't be loaded.
More details, Please check with our sales team.

Q. What about your M.O.Q ?

A. Our minimum order value is USD500. For smaller order, please check particularly with our sales team.

Q. What is the lead time?

A. Within 40 days for 40ft container.  Within 30 days for 20ft container. 

Q. What about your payment terms?

A. We accept various terms, including T/T , L/C , Western Union, etc.
 

Materials Used in Bearings

If you're not familiar with the types of bearings, you may be interested in knowing more about the materials used to manufacture them. Here's a look at what each type of bearing is made of, how it's used, and how much they cost. To find the right bearing for your application, it's important to choose a quality lubricant. The materials used in bearings are determined by their type and applications. Choosing the right lubricant will extend its life, and protect your machine's parts from damage and premature wear.

Materials used in bearings

Bearings are made from a variety of materials. Stainless steel is a common material used for the components of bearings. It has a higher content of chromium and nickel. When exposed to oxygen, chromium reacts with it to form chromium oxide, which provides a passive film. For higher temperatures, teflon and Viton are also used. These materials offer excellent corrosion resistance and are often preferred by manufacturers for their unique properties.
Stainless steel is another material used in bearings. AISI 440C is a high-carbon stainless steel commonly used in rolling-contact bearings. It is widely used in corrosive environments, especially in applications where corrosion resistance is more important than load capacity. It can also be heat-treated and hardened to 60 HRC, but has lower fatigue life than SAE 52100. Stainless steel bearings may carry a 20-40% price premium, but their superior performance is worth the extra money.
Graphite and molybdenum disulfide are 2 of the most common materials used in bearings. While graphite is a popular material in bearings, it has very poor corrosion resistance and is unsuitable for applications where oil or grease is required. Graphite-based composite materials are another option. They combine the benefits of both graphite and ceramic materials. A variety of proprietary materials have been developed for high-temperature use, such as graphite and MoS2.
Wood bearings have been around for centuries. The oldest ones used wood and Lignum Vitae. These materials were lightweight, but they were incredibly strong and durable. Wood bearings were also lubricated with animal fats. During the 1700s, iron bearings were a popular choice. In 1839, Isaac Babbitt invented an alloy containing hard metal crystals suspended in a softer metal. It is considered a metal matrix composite.

Applications of bearings

bearing
Bearings are used in many different industries and systems to help facilitate rotation. The metal surfaces in the bearings support the weight of the load, which drives the rotation of the unit. Not all loads apply the same amount of force to bearings, however. Thrust and radial loads act in distinctly different ways. To better understand the different uses of bearings, let's examine the various types of bearings. These versatile devices are essential for many industries, from automobiles to ships and from construction to industrial processes.
Cylindrical roller bearings are designed to support heavy loads. Their cylindrical rolling element distributes the load over a larger area. They are not, however, suited to handling thrust loads. Needle bearings, on the other hand, use small diameter cylinders and can fit into tighter spaces. The advantages of these types of bearings are numerous, and many leading producers are now leveraging the Industrial Internet of Things (IIoT) to develop connected smart bearings.
As a power generation industry, bearings play an essential role. From turbines to compressors, from generators to pumps, bearings are essential components of equipment. In addition to bearings, these components help move the equipment, so they can work properly. Typically, these components use ball bearings, although some roller bearings are used as well. In addition to being efficient and durable, these types of bearings also tend to be built to meet stringent internal clearance requirements and cage design requirements.
In addition to bearings for linear motion, bearings can also bear the weight of a rotary part. Depending on the application, they can be designed to minimize friction between moving parts. By constraining relative motion, bearings are used to reduce friction within a given application. The best-designed bearings minimize friction in a given application. If you're in the market for a new bearing, NRB Industrial Bearings Limited is an excellent source to begin your search.

Types of bearings

bearing
The type of bearings you choose will have a significant impact on the performance of your machinery. Using the right bearings can increase efficiency, accuracy, and service intervals, and even reduce the cost of purchasing and operating machinery. There are several different types of bearings to choose from, including ball bearings and flexure bearings. Some types use a fluid to lubricate their surfaces, while others do not.
Plain bearings are the most common type of bearing, and are used for a variety of applications. Their cylindrical design allows for a relatively smooth movement. Often made of copper or other copper alloy, they have low coefficients of friction and are commonly used in the construction industry. Some types of plain bearings are also available with a gudgeon pin, which connects a piston to a connecting rod in a diesel engine.
Magnetic bearings are the newest type of bearing. They use permanent magnets to create a magnetic field around the shaft without requiring any power. These are difficult to design, and are still in the early stages of development. Electromagnets, on the other hand, require no power but can perform very high-precision positioning. They can be extremely durable and have a long service life. They are also lightweight and easy to repair.
Another type of bearing is needle roller. These are made of thin, long, and slender cylinders that are used in a variety of applications. Their slender size is ideal for a space-constrained application, and their small profile allows them to fit in tight places. These types of bearings are often used in automotive applications, bar stools, and camera panning devices. They have several advantages over ball bearings, including the ability to handle heavy axial loads.

Cost of bearings

A wide range of factors affect the cost of aerospace bearings, including the bearing material and its volatility. Manufacturers typically use high-grade steel for aircraft bearings, which are highly affected by fluctuations in the steel price. Government policies also play a part in the variation in trade price. The implementation of COVID-19 has changed the market dynamics, creating an uncertain outlook for supply and demand of aerospace bearings. New trade norms and transportation restrictions are expected to hamper the growth of this industry.
Demand for aerospace bearings is largely driven by aircraft manufacturers. In North America, aircraft manufacturers must meet extremely high standards of weight, performance, and quality. They also must be lightweight and cost-effective. This has resulted in a rising cost of aerospace bearings. The market for aerospace bearings is expected to grow at the highest CAGR over the next few years, driven by increasing investments in defense and aerospace infrastructure across Asia-Pacific.
Hub assemblies are also expensive. A wheel hub will cost between $400 and $500 for 1 set of bearings. In addition to this, the speed sensor will be included. The average cost of wheel bearings is between $400 and $500 for 1 side, including labor. But this price range is much lower if the bearing is a replacement of an entire wheel assembly. It is still worth noting that wheel hub bearings can be purchased separately for a lower price.
Replacement of 1 or 2 wheel bearings will depend on the model and year of the vehicle. For a small car, 1 rear wheel bearing can cost between $190 and $225, whereas 2 front wheel hubs can cost upwards of $1,000. Labor and parts prices will vary by location, and labor costs may also be covered under some warranty plans. If you decide to have it done yourself, be sure to ask multiple shops for estimates.

Inspection of bearings

bearing
To maintain bearing performance and prevent accidents, periodic inspections are essential. In addition to ensuring reliability, these inspections improve productivity and efficiency. Regular maintenance includes disassembly inspection, replenishment of lubricant and monitoring operation status. Here are some common ways to perform the necessary inspections. Keep reading to learn how to maintain bearings. After disassembly, you must clean the components thoroughly. Ensure that the bearings are free of burrs, debris, and corrosion.
Ultrasound technology is an excellent tool for monitoring slow-speed bearings. Most ultrasound instruments offer wide-ranging sensitivity and frequency tuning. Ultrasound can also be used to monitor bearing sound. Ultra-slow bearings are usually large and greased with high-viscosity lubricant. Crackling sounds indicate deformity. You can also listen for abnormal noise by plugging a vibration analyzer into the machine. Once the machine shows abnormal noise, schedule additional inspections.
Ultrasonic inspection involves using an ultrasound transducer to measure the amplitude of sound from a bearing. It is effective in early warnings of bearing failure and prevents over-lubrication. Ultrasound inspection of bearings is a cost-effective solution for early diagnosis of bearing problems. In addition to being a reliable tool, ultrasonic testing is digital and easy to implement. The following are some of the advantages of ultrasonic bearing inspection.
Dynamic quality evaluation involves the use of a special fixture for measuring bearing deformations under low shaft speed and light radial load. The size of the fixture influences the value of the deformations. A fixture should be sized between the diameter of the sensor and the roller to ensure maximum precision. The outer deformation signal is more sensitive with a larger sensor diameter. A vibration-acceleration sensor is used for the contrast test.

China wholesaler OEM Agricultural Industrial Equipments Machinery Casting Parts     near me shop China wholesaler OEM Agricultural Industrial Equipments Machinery Casting Parts     near me shop